An Axis-shifted Crossover-Imaged Clustering Algorithm
نویسندگان
چکیده
With low computation time, the grid-based clustering algorithms are efficient clustering algorithms, but the size of the predefined grids and the threshold of the significant cells are seriously influenced their effects. In grid-based clustering system, the data space is partitioned into a finite number of cells to form a grid structure and then performs all clustering operations on this obtained grid structure. The ADCC algorithm is the first one to use axis-shifted strategy to reduce the influences of the size of the cells and inherits the advantage with the low time complexity. But it still uses the cell-clustering twice, the Axis-shifted Crossover-Imaged Clustering Algorithm, called ACICA, is proposed to use cell-clustering only once and still has the same results. The main idea of ACICA algorithm is to shift the original axis in each dimension of the data space after the image of significant cells generated from the original grid structure have been obtained. Because the shifted grid structure can be considered a dynamic adjustment of the size of original cells and the threshold of significant cells, the new image generated from this shifted grid structure will be used to revise and replace the originally obtained significant cells. Finally the clusters will be generated from this crossover image. The experimental results verify that, indeed, the effect of ACICA algorithm is less influenced by the size of the cells than other grid-based algorithms. Finally, we will verify by experiment that the results of our proposed ACICA algorithm outperforms than others. Key-Words: Data Mining, Grid Structure, Crossover Image, Cell, Shifted Grid, Cater-Corner Significant Cell
منابع مشابه
An Adaptive Crossover-Imaged Clustering Algorithm
The grid-based clustering algorithm is an efficient clustering algorithm, but its effect is seriously influenced by the size of the predefined grids and the threshold of the significant cells. The data space will be partitioned into a finite number of cells to form a grid structure and then performs all clustering operations on this obtained grid structure. To cluster efficiently and simultaneo...
متن کاملAn Axis-Shifted Grid-Clustering Algorithm
These spatial clustering methods can be classified into four categories: partitioning method, hierarchical method, density-based method and grid-based method. The grid-based clustering algorithm, which partitions the data space into a finite number of cells to form a grid structure and then performs all clustering operations to group similar spatial objects into classes on this obtained grid st...
متن کاملGenetic algorithm for Echo cancelling
In this paper, echo cancellation is done using genetic algorithm (GA). The genetic algorithm is implemented by two kinds of crossovers; heuristic and microbial. A new procedure is proposed to estimate the coefficients of adaptive filters used in echo cancellation with combination of the GA with Least-Mean-Square (LMS) method. The results are compared for various values of LMS step size and diff...
متن کاملEvolutionary Hierarchical Clustering Technique
In this paper an evolutionary technique for detecting hierarchical structure of a data set is considered [4]. A linear representation of the cluster structure within the data set is used. An evolutionary algorithm evolves a population of clustering hierarchies. Proposed algorithm uses mutation and crossover as search (variation) operators. Binary tournament selection is considered. A new crosso...
متن کاملیک روش ترکیبی خوشه بندی مبتنی بر الگوریتم ژنتیک با استفاده از عملگر های جدید تغییر
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often being stuck at locally optimal values and therefore cannot converge to global optima solution. In this paper, we introduce several new variation operators for the proposed hybrid genetic algorithm for the cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008